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New classes of similarity solutions of the inhomogeneous 
nonlinear diffusion equations 

Effat A Saied and Magdy M Hussein 
Department of Mathematics, Faculty of Science, Benha University, Benha, Egypt 

Received 19 November 1993 

Abstract The Lie similarity method has been used to extend the similarity solutions of the 
onedimensional inhomogeneous nonlinear diffusion equations. We determine the Lie point 
symmetry vector fields and calculate the similarity ansatz. Then we discuss the resulting 
nonlinear ordinary differential equations. Exact solutions are found, and their relations to 
some real physical are discussed. 

1. Introduction 

This paper is concerned with some enlargements of the similarity reductions of the 
inhomogeneous nonlinear diffusion INLD equation 

au a 
at ax xP-(x, I ) = - ( l u " u , )  

which is of considerable importance both in physics and mathematics. Also, its special 
cases have been used successfully to model physical situations in a wide range of fields 
involving diffusion processes [I-61. Self-similarity methods were developed [7,8] for 
determining similarity reductions of equation (1) and have many applications [9, IO]. 
Other results using the similarity transformation are given in [ I  11. 

In the following we use the method of group-invariant solutions [3-51 to determine 
new similarity reductions of equation (I) ,  in addition to the previously known ones 
[9,7] ,  and to give the group theoretical explanations of the results obtained in [7]. 

First we determine the Lie point symmetry vector fields [3,5]. Let 

where a, b and c are as yet unspecified functions of x ,  I and U. We apply the algorithm 
that provides the symmetry algebra by constructing the prolongation of the vector field 
U, i.e. the differential operator of the form 

pr2U= u+c"a.,+~~a.,+~~a.,  (3) 

where the functions c', cx and cX.' are expressed in terms of a, 6,  c and their derivatives. 
The prolongation is then applied to equation ( I ) ,  and the resultingexpression is required 
to vanish on solution of equation (1). This leads to a set of determining equations that 
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must then be solved. Solving equation ( 3 )  for a, b and c one obtains the vector field 
(2) in an explicit form. We find three symmetry vector fields, namely 

E A Saied and M M Hussein 

B,=a, 

E ~ =  - -xa, -ua,  (4) 
n 
U 

2 
B~ =-x a, +21 a, 

U 

where v = p  -m + 2. The symmetry vector fields form a Lie algebra; therefore, [EI, E3] = 
2 E 1 ,  and all other commutations 

[Er ,  E,] = [ E i ,  E,] = 0 i, j =  1 , 2 , 3 .  

Because a linear combination of the vector fields determines the general symmetry, we 
can use a combination of them to classify the types of solutions. By using the adjoint 
algebra [4], we are able to distinguish four different types of solution corresponding to 
the basic fields of an optimal system given by E3, E*, (El +E2) and (E2+B3).  

In the following, we demonstrate that these combinations of symmetries produce 
essential types of solution. We mention that one obtains further solutions of equation 
( I )  by applying finite group transformations to these solutions [ 3 , 4 ] .  Through the 
characteristic equations. 

&/a =dt/b =du/c 

we obtain the similarity variables and the similarity solution F(s) which reduce equation 
(1) to nonlinear ordinary differential equations, where some of them are solved and 
the others solved analytically in a restricted region of the ( p ,  m) parameter space. 

2. Group-invariant solutions 

( a )  In order to obtain the groupinvariant solutions (similarity solutions) let us first 
consider the combination of B2 and B3 by w =  &+kE>.  We introduce here the parameter 
k to demonstrate that not only will B , + &  give a specific similarity solution but also 
a linear combination of B2 and E ,  with arbitrary coefficients. We choose this combina- 
tion of vector fields first for clarity of representation. The corresponding finite trans- 
formation to w reads 

f=x I= t e'' g=ue-kC 

where r = u / ( 2 - n k )  and E is the group parameter. 

solution F(s) to be 
The group-invariant combinations suggest the similarity variables and the similarity 

u(x, t )  =t-k'2F(s). ( 5 )  = Xt-l/2' 

Substitution of the similarity into equation (1) results in 
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For k = ( p +  l)/r, equation (6)  will reduce to the ordinary differential equation 

d d 
ds ds 

- 1 /2r- ( S " + ~ F )  = - (PF"F' )  (7) 

where primes denote differentiation with respect to s. We may integrate equation (7) 
once to get 

- I /2r(sp' IF) =d"F"F' +cl (8) 
where cI is an arbitrary constant. 

For c, =0, further integration of equation (8) gives: 
(i) For n # O  

Fn=c2+ (n/2ru)s" U = p -  m 4- 2 f O  

and 

F" = c2 - (n/2rv) In s u = p  -m + 2=0. (10) 

The range of s is determined by requiring the expressions on the right-hand sides to be 
positive. 

(ii) For n=O, integration of equation (8) gives 

F= cz e-fl!/2ru (11) 

where cz is an arbitrary constant and vfO.  

physical meaning [IO], namely n =  - I ,  -i, - 2 / p +  1, - 2 .  
Let us now consider the case c1 f O  for some values of n which have some real 

I 

(i) For n =  - 1. Equation (8) will be the Bernoulli equation on substitution of F= 
1/G, to give 

- 0  (12) 
_ _  dG c -"G- ( 1 /a)s~-"+l - 

ds IS 

which has a solution of the form 

forp=m=O, and the solution 

G= cgc' + ?/2r(2- c , )  

f o r p = m = l , c l # 2 .  

(ii) For n =  -1 .  The substitution F=GZ transforms equation (8) into the Riccati 
equation, 

e+ I /2cls-" + I /4rs"-'""G2 = 0 (15) ds 
which can be transformed into one of second order by the transformation 
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to give 
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sH"+ (nz-p- 1)H'f ( ~ , / 8 r ) s ~ - " " + ~ H = O .  (16) 

Equation (16) can be written in a form of the Bessel equation by substitution of 

to give 

2 Y" + z Y'  + [. -( p - m + 2  T]Y=O.  
p - 2 m + 3  

Any solution of equation (17) is a cylindrical function, and the general solution is 
Y ( 2 )  = AXI (z) + BXz(z) where XI and XZ are two linearly independent cylindrical 
functions (for details see 1121). 

(iii) For n = - 2 jp  + 1, We write F = S - ' - ~ G ( Z ) ,  and z= In s, then equation (8) reads 

For the casep = n z ,  we have an Able equation of the first kind with constant coefficients; 
and the equation is separable. 

(iv) For n =  - 2 ,  p =  - m = k .  The substitution F=Zrcls-"'G(s) will transform 
equation (8) to an Able equation of the form 

where A = (Kf 1)/2rC?, which is separable, and an elliptic integral occurs. 

(b) The similarity reduction is also obtained if we examine the linear combination 
of El and BZ by w = BI + k B 2 .  Here we introduce k in a similar way as above. The finite 
transformation for this combination can be written as 

(20) zzx e-nkc/o f = f + E  

If we have the special solution of equation ( I )  as u(x ,  t ) ,  we obtain from transformation 
(20) another solution of zi(x, 1). which reads 

g= e-nkc/o , t + E )  e-". 

The general reduction of this subgroup can be obtained by the similarity representation 

F (4 (21) = e"kr/u U = e-x' 

which reduces equation (1) to 

-KsP F--sF' =-(d"F"F'). ( :  
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If we put n = - u/p  + 1 then we may integrate equation (22) once to get 

F"= ks"/(p + I)'+ C V # O  (23) 
where Cis an arbitrary constant. 

including only scale invariance with respect to x and U. 
(c) A further new class of similarity solutions is generated by the vector field B2, 

The finite transformation for this vector field can be written as 

2 = e-"a/" f= t ti=ue-'. 

The general reduction of this subgroup can be obtained by the similarity representation 

s=f U =  x"/"F(s). (24) 
This solution inserted in equation (1) gives 

Direct integration gives 

where Cis an arbitrary constant, n#O and u=p-m+2. 
For the casep=m, then v=2, and the corresponding solution for U is 

4+  k ( p +  1) 

For n = - 2/p + 1, we get the steady state solution 

U =  A/xp".  

The general solution (27) requires the expression on the right-hand side to be positive, 
which determines the range of time t .  

( d )  The last vector field of our optimal system which remains to be discussed is &, 
including only scale invariance with respect to x and t .  The corresponding new similarity 
representation is given by 

s = xu/ t  u=F(s)  (28) 

ds-(F"F') + U( 1 +p)F"F'+sF'=O 

and the reduced equation of equation (1) reads 

(29) 
d 
ds 

which may be solved for some values of p ,  m and n as follows. 

(i) Forp=  - 1. Equation (29) is integrated once to get 

u2F"dF/ds+ F=C (30) 

F(s)= ( - s n / ( ~  -m)')"n. (31) 

where Cis an arbitrary constant. For C=O, further integration of equation (30) gives 
for n CO, m# 1 
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For C#O, let F=G-', then we get for m #  1 

E A Saied and M M H u m i n  

U' dG/ds= G"" - CG"" 

which is an Abel equation, which may be integrated for some values of n.  

(ii) For vfO, n =  - u 2 / ( p u + v +  1). Equation (29) has a solution of the form 

(33) 
In this case, if p = m ,  i.e. u=2, n= -4/(3+2p), p=O, I ,  2, .  . . , the corresponding 
solutions of equation (1) follow from 

u(x,  f) = ( l / t ) - " + 2 P " 4 .  

In thecasepfm,m=2,p=l,  therm=-$ andequation (1) has thesolution u ( x , f ) =  
(x / f ) - ' .  and for n2=2, p =  -1 ,  equation (1) has the solution u(x, 1) = x f .  

3. Discussion 

We have attempted to find a comprehensive analytical solution to an inhomogeneous 
nonlinear diffusion equation (1) by applying the Lie similarity method. Furthermore, by 
applying the adjoint representation, the appropriate four optimal systems of similarity 
reductions are determined, which enables us to obtain a great variety of solutions. Our 
precedure extends some earlier results of some real physical processes. Because of the 
large number of different cases, it is not advisable to treat every case. Hence, we will 
consider three illustrative examples for some particular values of the parameter space 
( p ,  m) and n. Equation (1) has a wide range of applications in the case m=p=A, where 
A ( = O ,  1,2) is the space dimension, for both n<O ('fast' diffusion) and n>O ('slow' 
diffusion) [ 5 , 6 ]  and n=O. Now we discuss briefly the solutions for some particular 
values of n and 1. 

3.1. Fast dilficsion case 

We considered before the cases n = - t, - I ,  - 2, - 2/p + 1. Let us now consider the 
case p =HZ = 0 and n = - 4 which arises in models for plasma diffusion [ 131 and for the 
thermal expulsion of liquid helium [2, 141. It has been noted in [15, 161 that equation 
(1)  possesses a solution of the form ~ = ( a ~ ( x ) + a ~ ( x ) t ) ~ .  The typical behaviour of this 
solution can be obtained by equation (27) in a simple way, and the nature of the 
functions ao, al are determined. Another type of solution, in terms of Bessel's function, 
can be obtained by equations (15)-( 17). It is important to emphasize that equation (1) 
has been reduced to ordinary differential equations, like equations (22) and (29), which 
can be solved numerically. 

3.2. Slow d@usion case 

Three cases of considerable interest will be discussed briefly: 
(i) 1=0, and n>O, where equation (1)  determines the transient temperature distri- 

bution and was obtained and studied in [17]. In the light of our results, equation (9) 
may be rewritten in terms of the new constants SI and R with relation ( 5 )  as 

u(s)= RI -k /2 ( s : -~2) ' /n  s,>s>o 
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which may be written in dimensionless form as 

u(s) /u(O)=( l  -(S/SI)2)'/n 

which agrees with that obtained in [17]. Other types of solution can be obtained by 
the similarity representations (24) and (27) as 

u(x, t) =R2'"(to- I)-'" for to > t 

where to is a new constant and R= (Cn/4+2n)-'". With the similarity transformations 
(21) and (ZS), equation ( I )  can be reduced to ordinary differential equations like formu- 
lae (22) and (29), which can be solved numerically. An equation similar to expression 
(1)  also appears for the pressure distribution in polytrophic gas flow through a porous 
medium. 

(ii) d= 0, and n = 2, where equation ( I )  represents a process of melting and evapora- 
tion of metals [IS]. By using the similarity method we have the following types of 
solution: by relations (5 )  and (9) 

u = t - ~ / 4  (C- &&-'/2)'/2 

and by relations (24) and (27), 

u(n, 1 )  = tx(lo- t)-"* 

The similarity transformations (21) and (28) reduce equation (1) to an ordinary differ- 
ential equation which can be solved numerically. 

(iii) 1=0, and n= 1, where equation (1) arises in other physical phenomena besides 
heat or chemical diffusion, for example the isothermal percolation of a perfect gas 
through a microporous medium [2]. A variety of solutions can be presented, as follows: 
by relations (5 )  and (9) 

for to > t. 

= t- W(c- Ax2t-2/3) 

and by relations (24) and (27) 

u(x, I)=g(C-6t)-' 

The transformations (24) and (22) will reduce equation (I)  to two ordinary differential 
equations like FF,+ Fj+kF-(k/2)SFS=0, where k is an arbitrary constant, and 
4SFFSS+ 4SF2+2FFS+ SF,=O, which can be solved numerically. 

3.3. For the case n = 0, and p = m = 2, A= 0, I, 2 

In this case the one-dimensional heat conduction equation without the heat generation 
term can be represented by equation ( I )  for the linear, cylindrical or spherical coordinate 
system. 

The fundamental solution of the linear diffusion equation (I=O) is recovered by 
equation (1 I). where 

u(x,  t)= ct-k/2exp(-k2/4tk) 

and k is an arbitrary constant. For I =  I ,  it has the solution 

u(x, I) = ct-' exp(-x2/4t) ' 
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and for A=2, it has the solution 
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u(x, 1) = ct-3flexp(-x2/4t). 

The similarity transformation (21) reduces equation (1) for L= 1,2 to 

SFss + LFs + kSF= 0 
where k is an arbitrary constant. Substituting F(S)=S"-a"Zg(Z) ,  and Z=k-"'S, 
gives 

z'g,,+zg,+ (22-b2)g=O 

where b= ( 1  -A)/2,  and we get a solution of a Bessel function of order b [ 12]. 

(28), where the reduced equation of relation (1) reads 
Other types of solutions can be obtained by using the similarity transformation 

4sF, + (at s)F, = 0 
where a=2(1 +A) and I = l ,  2, which has the solution for 1=1 

+ ... s z s3 u=F(s)=lns--+--- 
4.1! 4'.3! 

and for A=2 the solution 
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